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The botulinum neurotoxin-like toxin from Weissella oryzae (BoNT/Wo) is

one of the BoNT-like toxins recently identified outside of the Clostridium

genus. We show that, like the canonical BoNTs, BoNT/Wo forms a com-

plex with its non-toxic non-hemagglutinin (NTNH) partner, which in tradi-

tional BoNT serotypes protects the toxin from proteases and the acidic

environment of the hosts’ guts. We here report the cryo-EM structure of

the 300 kDa BoNT/Wo-NTNH/Wo complex together with pH stability

studies of the complex. The structure reveals molecular details of the

toxin’s interactions with its protective partner. The overall structural

arrangement is similar to other reported BoNT-NTNH complexes, but

NTNH/Wo uniquely contains two extra bacterial immunoglobulin-like

(Big) domains on the C-terminus. Although the function of these Big

domains is unknown, they are structurally most similar to bacterial pro-

teins involved in adhesion to host cells. In addition, the BoNT/Wo prote-

ase domain contains an internal disulfide bond not seen in other BoNTs.

Mass photometry analysis revealed that the BoNT/Wo-NTNH/Wo com-

plex is stable under acidic conditions and may dissociate at neutral to basic

pH. These findings established that BoNT/Wo-NTNH/Wo shares the gen-

eral fold of canonical BoNT–NTNH complexes. The presence of unique

structural features suggests that it may have an alternative mode of activa-

tion, translocation and recognition of host cells, raising interesting ques-

tions about the activity and the mechanism of action of BoNT/Wo as well

as about its target environment, receptors and substrates.

Introduction

Botulinum neurotoxins (BoNTs) are the most toxic

proteins known. They are typically produced by spore-

forming anaerobic bacteria of the genus Clostridium.

Since the first description of botulism, the disease

caused by botulinum neurotoxins, in 1897 [1] seven

canonical serotypes of the toxin have been identified –
BoNT/A-G [2–7]. In addition the BoNT-like toxins

BoNT/X, BoNT/En, PMP1 and BoNT/Wo have

recently been identified [8–12]. All of them specifically

target neuromuscular junctions where they cleave the
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proteins from the SNARE family, thereby blocking

the release of the neurotransmitter acetylcholine, which

leads to paralysis and if not treated, even death [13].

Interestingly, despite being classified as a potential bio-

terrorism threat [14], BoNTs are being used for the

treatment of a large and increasing number of medical

conditions, including movement disorders [15], overac-

tive bladder [16], and severe pain [17,18].

BoNTs most often enter the target organism by con-

sumption of contaminated food and then cross the

intestinal epithelial barrier in order to reach the gen-

eral circulation and travel to the peripheral cholinergic

nerve terminals [19]. BoNTs utilize a dual receptor

binding mechanism to target neuromuscular junctions

selectively. Then they use synaptic vesicles to enter

motor neurons [20]. From the synaptic vesicle, the cat-

alytic domain is translocated to the cytosol using a

mechanism driven by the transmembrane pH gradient

generated by the ATPase proton pump. Upon disulfide

bond reduction, the catalytic metalloprotease domain

is released in the cytosol where it cleaves one of the

SNARE proteins, causing flaccid paralysis [21,22].

The bont gene is typically located next to a gene for

the non-toxic non-hemagglutinin protein (ntnh), and

depending on the serotype, genes for either the hemag-

glutinin proteins (ha) or the OrfX proteins (orfx). BoNT

and its corresponding non-toxic non-hemagglutinin

(NTNH) partner protein form a heterodimer, also

known as the minimally functional progenitor toxin

complex (M-PTC) [23]. Both sequence and structural

conservation of BoNT and NTNH suggest that the two

genes are a result of a gene duplication event after which

NTNH evolved to have a protective function [24].

NTNH has been shown to protect BoNT from external

damage, such as pH denaturation and protein-

modifying agents [24], thereby shielding it from the

acidic pH and proteolytic degradation in the gastroin-

testinal tract of the target species. Moreover, in BoNT/

A, the interaction with its corresponding NTNH/A is

important for BoNT to cross the intestinal barrier and

reach the nervous system, as the n-loop of NTNH/A is

the attachment point for the HA protein complex [25–
27]. The HA proteins together with M-PTC form a large

progenitor toxin complex (L-PTC) which facilitates the

cross-intestinal transport of BoNT [25–27]. The func-

tion of OrfX proteins is still unknown and it is not clear

whether they form a complex with M-PTC. However,

all OrfX proteins have been shown to belong to the

tubular lipid-binding family of proteins [28–31].
The assembly of the M-PTC is pH-dependent [32]

and greatly enhances the potency of the neurotoxins

when ingested orally [33]. To date, the structural infor-

mation available for M-PTC complexes is the crystal

or cryo-EM structures of BoNT/A, BoNT/E and

BoNT/X in complex with their respective NTNHs [34–
36]. NTNH has a highly similar structure to BoNT,

despite a low sequence similarity. It displays a three-

domain organization that corresponds to the binding

domain (HC), the translocation domain (HN), and the

catalytic domain (LC). However, NTNH lacks several

of the key features of BoNTs, such as the catalytic

zinc-binding motif, the activation loop, and the disul-

fide bridge that is involved in the translocation of the

LC, and they contain none of the ganglioside-binding

motifs [27,34].

Recently the first BoNT homologs outside the Clos-

tridium genus were reported [8–12]. A BoNT-like pro-

tein was identified in the genome of the Gram-positive

bacterium Weissella oryzae and designated as BoNT/

Wo. The sample was isolated from fermented rice grain

and the toxin has been suggested to target insects or

worms [11,37]. While BoNT/Wo shows clear homology

to BoNTs and the conserved HExxH metalloprotease

motif [38], it presents a low sequence identity (18%)

compared to other BoNTs, which is below the typical

range for the BoNT family members (28–64%) [39].

Interestingly, the interchain disulfide bond, essential for

the release of the LC [21], is missing in BoNT/Wo, sug-

gesting a different mode of action. The order of the

bont-ntnh genes is conserved among BoNT gene clusters,

while for BoNT/Wo it is reversed. Moreover, genes for

HA or OrfX proteins are missing [11,12]. So far, the

only available structural information about BoNT/Wo

is the crystal structure of the LC [40]. BoNT/Wo is evo-

lutionarily distinct from all the other toxins and even

from the other BoNT-like toxins BoNT/X, BoNT/En

and PMP1 that form their own evolutionary branch

[8–10]. It will be interesting to see how the evolutionary

relationships within this toxin family unravel and addi-

tional new toxins are likely going to be discovered with

the rapidly growing sequence databases.

Here, we report the cryo-EM structure of the

BoNT/Wo M-PTC at a resolution of 2.97 �A, together

with pH stability studies of the complex. The structure

reveals molecular details of the toxin’s interactions

with its protective partner, providing the basis to

understand its toxicity mechanism, which could also

help to shed light on the evolution of the botulinum

neurotoxins. The structure also reveals two additional

bacterial immunoglobulin (Ig)-like (Big) domains,

observed for the first time as parts of an NTNH, sug-

gesting that NTNH/Wo might contribute to receptor

recognition at some stage of BoNT/Wo intoxication.

This could potentially also be the case for other mem-

bers of this toxin family and warrants revisiting the

role of NTNH also for canonical BoNTs.
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Results and Discussion

The overall structure of the BoNT/Wo M-PTC

We present here the cryo-EM structure of the M-PTC-

complex of BoNT/Wo at a nominal resolution of

2.97 �A, obtained from 247 143 particles selected from

a total of 6232 recorded movies. Figure 1A shows an

assessment of the local resolution throughout the

entire map.

BoNT/Wo forms a tight, interlocked complex with

the NTNH/Wo. The domains involved in complex

Fig. 1. (A) Local resolution estimates for the cryo-EM map of the BoNT/Wo M-PTC. (B) Domain organization of the BoNT/Wo M-PTC is

shown as a cartoon representation (left) and as an illustration (right), with the BoNT/Wo and NTNH/Wo shown in dark and light shades,

respectively. (C) The overall structure of the BoNT/Wo M-PTC with BoNT/Wo in cyan and NTNH/Wo in orange. (D) Comparison of BoNT/Wo

(cyan) with BoNT/A (violet tube, PDB code 3V0A) and BoNT/E (green tube, PDB code 4ZKT). (E) Comparison of NTNH/Wo (orange) with

NTNH/A (violet tube, PDB code 3V0A) and NTNH/E (green tube, PDB code 4ZKT).
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formation are the HN and HC domains of BoNT/Wo

and the corresponding domains of NTNH/Wo, while

both LCs are solvent-exposed and not involved in this

interaction (Fig. 1B,C). The overall structure of

BoNT/Wo M-PTC is similar to the structures of M-

PTC complexes of BoNT/A [34] (PDB code 3V0A)

and BoNT/E [35] (PDB code 4ZKT) (Fig. 1D,E) as

indicated by the high Z-scores and low r.m.s.d. values

(Table 1) [41].

NTNH/Wo bacterial Ig-like domains

A major difference between BoNT/Wo M-PTC and

other such complexes is the presence of additional Big

domains (residues 1049–1120 and 1128–1199) on the

C-terminus of the NTNH/Wo, which explains why

NTNH/Wo is 10 kDa larger than NTNHs of other

serotypes [11,12]. Interestingly, the Big domains extend

into the solvent-accessible region and interact with the

tip of the HN/Wo helix bundle, creating a Y-shaped

formation (Fig. 2A–C). Moreover, the characteristic

helix bundle of the translocation domain in NTNH/

Wo is unusually short in comparison with other trans-

location domains, measuring only ~ 70 �A, while the

translocation domains of NTNH/A and /E are both

~ 105 �A long (Fig. 2E). This is a dramatic difference,

likely connected to the unique presence of the Big

domains in the NTNH/Wo. The functional conse-

quences of these distinct features of the NTNH/Wo

are however unknown.

In comparison to each other, the two NTNH/Big

domains are almost identical (Fig. 2C) with an r.m.s.d.

value of 1.4 �A. The Big domains belong to the

immunoglobulin-like domain superfamily that has been

identified in a variety of surface proteins. For example,

Escherichia coli intimin and Yersinia pseudotuberculosis

invasin, which contain a Big domain, have been shown

to play important roles in invading host cells [42,43].

Additionally, Big domains in Leptospira interrogans

Ig-like proteins have been indicated to regulate the

adhesion of pathogenic leptospires to host cells [44].

Moreover, a Dali [41] search against the PDB (Table 2,

Fig. 2D) showed that the NTNH/Wo Big domain is

structurally the most similar to proteins that are

involved in adhesion to host cells and infection and

immune evasion, such as SraP, a surface-exposed serine-

rich repeat glycoprotein [45] and the bacterial surface

protein Rib domain [46], respectively. All such domains

extend into the solvent and have a flexible linker

between separate Big domains, enabling interaction and

binding to other molecules. Therefore, the NTNH/Wo

Big domain could potentially be involved in the adhe-

sion to the epithelial cells in the gut or airway and in the

process of toxin delivery to the target cells. The bont

and ntnh genes are typically accompanied in a gene clus-

ter with genes that encode accessory proteins of the HA

or OrfX type [47]. The HA proteins are known to inter-

act with the NTNH n-loop and facilitate transport

across the intestinal wall [25–27]. Since no such acces-

sory proteins accompany BoNT/Wo in the W. oryzae

genome [11], it is tempting to speculate that the Big

domains take over their functions.

BoNT translocation domain

Canonical BoNTs have a conserved PYxGxAL motif,

which functions in toxin translocation [11]. Moreover,

the LC and the heavy chain (HC) in BoNTs are

crosslinked by a disulfide bond between the two

chains, which has been shown to be critical for the

translocation of the LC across the endosomal mem-

brane. The disulfide bond is reduced in the cytosol,

resulting in LC liberation [21]. Interestingly, in

BoNT/Wo this conserved motif and the disulfide

bond have previously been shown to be absent

[11,12]. Moreover, our cryo-EM structure shows that

the activation loop is intact and significantly shorter

compared to those of BoNT/A [34] (PDB

code 3V0A) and BoNT/E [35] (PDB code 4ZKT)

(Fig. 3A). Such a short loop is likely to be more

resistant to proteolytic activation and suggests that

BoNT/Wo may use a unique, unidentified mechanism

for the translocation of the LC to the cytosol.

Structural analysis has revealed an unusual, highly

negatively charged patch on the HN, which interacts

with a positively charged patch on the LC. A com-

parison of surface charges between BoNT/Wo and

BoNT/A [34] (PDB code 3V0A) shows that BoNT/

Wo is considerably more charged in the areas where

the HN and the LC interact (Fig. 3B–E). This strong

electrostatic interaction could represent an alternative

stabilization mechanism compensating for the absence

Table 1. Pairwise comparison of BoNT/Wo and NTNH/Wo with

BoNT/A M-PTC and BoNT/E M-PTC using Dali [36].

PDB

r.m.s.d

(�A)

No. of

aligned

positions

No. of

residues

in

matched

structure

Sequence

identity of

aligned

positions

(%) Z-score

BoNT/Wo

3V0A 5.9 735 1280 14 24.5

4ZKT 5.6 787 1235 13 26.7

NTNH/Wo

3V0A 4.2 959 1150 16 30.9

4ZKT 4.3 875 1114 16 26.9
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of the disulfide bridge and, in case the activation

loop is cleaved, possibly helps to keep the LC and

HC associated.

BoNT catalytic domain

The LC of BoNT/Wo is a catalytically active zinc-

dependent metalloprotease previously reported to

cleave the SNARE protein VAMP2 [37] and we have

previously determined its crystal structure [40]. In

contrast to X-ray crystallography, it is more difficult

to precisely locate protein-bound metal ions at a

moderate resolution using cryo-EM, where images are

generated based on bright-field phase contrast, being

less sensitive to atomic number [48]. In agreement

with this, the zinc ion was not well resolved in the

structure of the BoNT/Wo M-PTC and we chose not

to include it in the final model. We have determined

the Zn2+ coordination in the free LC in great detail

previously [40].

Fig. 2. (A) The Big domains of NTNH/Wo (orange) create a Y-shaped formation with the translocation domain of the toxin (cyan). (B) Cryo-

EM map for the second Big domain extends into the solvent. (C) A zoom-in of the NTNH/Wo Big domain and a superposition of both NTNH/

Wo Big domains (the star symbols are helping with the distinction between the two domains). (D) Some of the closest structural homologs

of NTNH/Wo Big domain: a chitinase (deep teal, PDB code 4MB4), and O-glycopeptidase (purple, PDB code 7JS4), as well as a superposi-

tion of these Big domains with the N-terminal NTNH/Wo Big domain. (E) Comparison of the NTNH/Wo translocation domain (orange) with

NTNH/A (violet, PDB code 3V0A) and NTNH/E (green, PDB code 4ZKT).
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The catalytic pocket of BoNT/Wo has been shown

to be wider and more negatively charged compared to

other serotypes [40]. Remarkably, in the BoNT/Wo

M-PTC the belt of BoNT/Wo dives deeper into the

active site and interacts directly with the zinc ion and

residues of the active site (Fig. 4A). Typically, the zinc

ion is coordinated by the HExxH+E tetrahedral motif

and a conserved Tyr stabilizes the catalytic intermedi-

ates [49,50]. However, in BoNT/Wo the Glu251 and

the Tyr412 shift away, and instead the Asp551 from

the belt takes part in the tetrahedral coordination

of the zinc ion, replacing the Glu251. This interaction

likely has an inhibitory function, blocking the active

site of the LC until the toxin reaches its target site of

action (Fig. 4B).

Fig. 3. (A) A comparison of the activation loop in BoNT/Wo (cyan) with activation loops in BoNT/A (violet, PDB code 3V0A) and BoNT/E

(green, PDB code 4ZKT). (B–E) Comparison of HC and LC surface charge of BoNT/Wo (B, D) and BoNT/A (C, E). On the left side of each

panel, a part of the toxin is shown as a cartoon for ease of orientation. (B) BoNT/Wo HC is shown as a surface representation and the LC is

shown as a cyan cartoon. (C) BoNT/A HC is shown as a surface representation and the LC is shown as a violet cartoon. (D) BoNT/Wo LC

is shown as a surface representation and HC is shown as a cyan cartoon. (E) BoNT/A LC is shown as a surface representation, and HC is

shown as a violet cartoon. The surfaces are colored according to electrostatic potential (values in kT/e).

Table 2. Top 10 hits of Dali [36] comparison of NTNH/Wo Big

domain to the whole PDB.

PDB

r.m.s.d

(�A)

No. of

aligned

positions

No. of

residues in

matched

structure

Sequence

identity of

aligned

postions (%) Z-score

4MB4 1.9 74 531 30 9.1

7JS4 2.8 73 953 21 7.5

2KPN 2.3 73 97 30 7.4

7JRL 3.2 74 457 20 7.3

4L3A 2.1 66 469 15 6.6

5FQ8 2.6 70 212 29 6.6

6S5Z 3.1 64 82 13 6.4

4M00 2.3 67 501 25 6.3

6S5Y 3.2 67 501 25 6.3

2C26 2.6 66 250 18 5.3
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The BoNT/Wo LC exhibits a unique intrachain

disulfide bridge (Fig. 4C), which is not present in any

BoNT serotype, involving non-conserved amino acid

residues Cys142 and Cys366. This bond was not

observed in the crystal structure of BoNT/Wo LC

(PDB 6RIM) [40], probably because of the reducing

agent TCEP in the storage buffer, or potentially due

to radiation damage. The disulfide bridge provides

additional stabilization to the LC and could therefore

make the potential translocation of the LC across the

membrane more difficult since the process likely

involves LC unfolding [51].

Comparison of the BoNT/Wo LC in the cryo-EM

structure to the crystal structure of the LC (PDB

6RIM) [40] shows that the beta-hairpin including resi-

dues 276–293 in the M-PTC complex moves away

from the LC to interact with the BoNT/Wo HN, which

forms a pocket that accommodates the loop (Fig. 4C).

Additionally, the loop insertion (residues 325–337)

inside alpha-helix 313–350 observed in the crystal

structure, which is unique to BoNT/Wo among all the

LCs, has a similar conformation in the complex and

also interacts with the BoNT/Wo HN (Fig. 4C).

BoNT binding domain

BoNT/Wo does not display typical receptor binding

sites. It lacks a conserved SxWY ganglioside

binding motif, as well as the beta-hairpin motifs

known to bind SV2. However, there are some surface

regions on the binding domain of BoNT/Wo that

exhibit a strong electrostatic potential and could be

involved in the binding of yet unidentified receptors.

Interactions between BoNT/Wo and NTNH/Wo

The buried surface area between BoNT/Wo and

NTNH/Wo is ~ 7215 �A2, which is much larger than

Fig. 4. (A) The surface of BoNT/Wo LC is shown in pale cyan and the belt region of BoNT/Wo is shown in dark gray. The location of the

zinc ion is indicated by a gray circle. (B) Comparison with the active pocket from the LC crystal structure (light gray, PDB code 6RIM). (C)

Highlighted sites of interest in the BoNT/Wo LC in the cryo-EM structure (cyan), as compared to the crystal structure (gray, PDB

code 6RIM).
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the interaction interfaces of M-PTC complexes of

BoNT/A, BoNT/E and BoNT/X, which measure

~ 3663, 3404 and 4778 �A2, respectively [52]. The exten-

sive interaction surface is likely to be making the

BoNT/Wo M-PTC more stable. The BoNT/Wo M-

PTC interface is stabilized by a number of electrostatic

interactions between charged residues of both proteins.

Areas of BoNT/Wo taking part in complex formation

are mostly positively charged (Fig. 5A,B), while those

of NTNH/Wo are negatively charged (Fig. 5C,D).

These areas include the following interactions: Resi-

dues 898–905 of the HN and 302–303, 314–315 and

399–402 of the LC interact with residues 854–868 of

the nHC and 1046–1082 of the Big domain (Fig. 5A,

C). Furthermore, residues 1123–1133 of the HC and

893–905 of the HN interact with residues 857–868 and

982–986 of the nHC (Fig. 5B,D).

pH-dependent stability of the complex

It was very difficult to study the BoNT/Wo M-PTC

using size-exclusion chromatography. The complex

interacted with the column material and we believe that

the strength of this interaction was pH dependent,

resulting in uninterpretable results. To study the disas-

sembly of BoNT/Wo M-PTC, we instead utilized mass

photometry [53]. 75 nM BoNT/Wo M-PTC was analyzed

in buffers of different pH (5.5, 6.5, 7.5 and 8.5). The

two peaks correspond to the BoNT/Wo M-PTC and the

mixture of free BoNT/Wo and free NTNH/Wo, which

are roughly the same size (Fig. 6). It is evident that the

complex is stable at pH 5.5, where more than 70% of

the proteins are forming a complex. The complex starts

to disassemble between pH 6.5 and pH 7.5. At pH 7.5

only about 40% of the proteins are still forming a com-

plex and at pH 8.5 the complex is almost completely dis-

assembled. This agrees with the data for BoNT/A M-

PTC and BoNT/X M-PTC, which disassemble at pH

7.5 and between 7.5 and 8.5, respectively [34,36]. How-

ever, we noticed that pH stability is concentration-

dependent, so it is possible, that at higher concentrations

the complex is stable even at a more basic pH.

The M-PTC of BoNT/A has been shown to have a

patch of pH-sensing residues in the HC that are

Fig. 5. Electrostatic interactions across the BoNT/Wo M-PTC interface. On the left side of each panel, a part of the complex is shown as a

cartoon for ease of orientation. (A, B) BoNT/Wo is shown as a surface representation, highlighting the areas that form electrostatic interac-

tions with NTNH/Wo (orange cartoon). (C, D) NTNH/Wo is shown as a surface representation, highlighting the areas that form electrostatic

interactions with BoNT/Wo (cyan cartoon). The surfaces are colored according to electrostatic potential (values in kT/e).
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responsible for the neutral pH-driven disassembly of

the M-PTC and the release of the toxin molecule [34].

Interactions between BoNT/Wo and NTNH/Wo are

extensive; however, the residues involved in them

are not localized as in BoNT/A M-PTC, so the pH

sensing in M-PTC BoNT/Wo likely does not occur

locally, but rather on a global level.

Conclusions

The cryo-EM structure of BoNT/Wo M-PTC reveals

unique features of the BoNT/Wo M-PTC. BoNT/Wo

lacks the essential disulfide bridge between the LC and

HC, but has a non-conserved disulfide bond within the

LC. In addition, it has an unusually short activation

loop. These observations suggest an alternative mode

of activation, translocation and liberation of the cata-

lytic domain. Two unique Big domains are incorpo-

rated in NTNH/Wo and could be involved in the

delivery of the toxin to the target cells. These findings

raise interesting questions about the activity and the

mechanism of action of BoNT/Wo as well as about its

target environment, receptors and substrates.

Materials and methods

Cloning, protein expression and purification

DNA sequences encoding W. oryzae bont and W. oryzae

ntnh were cloned into a pRSFDuet vector, where the C-

terminus of ntnh contained a His-tag. The plasmid was

transformed into E. coli BL21(DE3). Cultures were grown

in TB media using the LEX bioreactor system (Harbinger

Biotech, Toronto, ON, Canada) at 37 °C until an OD600

value of 0.8, after which the temperature was reduced to

18 °C and protein expression was induced with 1 mM

IPTG. The cells were harvested approximately 15 h post-

induction by centrifugation.

Cells were resuspended in a buffer containing 20 mM

MES pH 5.5, 200 mM NaCl, 5% glycerol and then lysed by

sonication. The lysate was clarified by centrifugation at

45 000 g for 1 h before loading onto a pre-equilibrated

5 mL HisTrap HP column (GE Healthcare, Uppsala, Swe-

den). Purified protein was eluted with 500 mM imidazole in

20 mM MES pH 5.5, 200 mM NaCl, and 5% glycerol. Frac-

tions containing BoNT/Wo M-PTC were pooled and fur-

ther purified via size-exclusion chromatography (SEC)

using a Superdex 200 16/60 column (GE Healthcare), pre-

equilibrated with 20 mM MES pH 5.5, 200 mM NaCl, and

5% glycerol.

Mass photometry

Mass photometry was utilized to study the pH-dependent

disassembly of the complex. A microscope coverslip was

assembled with a sample well cassette. To find focus, fresh

buffer was flown into the chamber, the focus position was

identified and secured in place with an autofocus system

based on total internal reflection for the entire measure-

ment. For each acquisition, 5 lL of the complex was

diluted in 15 lL of the corresponding buffer to the final

concentration of 75 ng�mL�1 and movies were recorded for

60 s. All measurements were performed using mass pho-

tometer Refyn TwoMP (Refyn Ltd, Oxford, UK), calibrated

with NativeMark Unstained protein standard (Thermo

Fischer Scientific, Waltham, MA, USA), and evaluated

using software AcquireMP (Refyn Ltd). The mass photom-

etry buffers used were 50 mM MES pH 5.5, 150 mM NaCl,

0.5 mM TCEP; 50 mM MES pH 6.5, 150 mM NaCl, 0.5 mM

TCEP; 50 mM Hepes pH 7.5, 150 mM NaCl, 0.5 mM TCEP

and 50 mM TRIS pH 8.5, 150 mM NaCl, 0.5 mM TCEP.

Cryo-EM sample preparation

Quantifoil R2/2 Cu 300 mesh holey carbon grids (Quantifoil

Micro Tools, Jena, Germany) were glow discharged (20 mA,

60 s, GloQube� Plus Glow Discharge System; Quorum

Technologies, Laughton, UK). The sample was diluted in

25 mM MES pH 5.5, 150 mM NaCl to 0.7 mg�mL�1, and

3 lL were applied onto a grid using the Vitrobot blotting

robot (FEI, Hillsboro, OR, USA) at 100% humidity and

4 °C, waiting 15 s for the sample to equilibrate before blot-

ting for 1.5 s. Alternatively, Quantifoil R1.2/1.3 Cu 300

mesh holey carbon grids (Quantifoil Micro Tools) were glow

discharged (40 mA, 90 s, GloQube� Plus Glow Discharge

System; Quorum Technologies), coated with 0.2 mg�mL�1

graphene oxide suspension using a drop-blot-wash technique

[54] and 0.1 mg�mL�1 BoNT/Wo M-PTC were applied.

Grids were clipped, stored in liquid nitrogen, and screened

on a Talos Arctica microscope operating at 200 kV and

Fig. 6. Mass distribution for 75 nm BoNT/Wo M-PTC at several dif-

ferent pHs.
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equipped with a Falcon III direct electron detector (FEI) at

the Stockholm node of the Swedish National Cryo-EM facil-

ity (SciLifeLab, Stockholm, Sweden).

Cryo-EM data acquisition and processing

Two data sets were acquired using the same settings at the

Stockholm node of the Swedish National Cryo-EM facility

(SciLifeLab) on a Titan Krios microscope (FEI) operating

at 300 kV and equipped with a K2 Summit direct electron

detector (Gatan, Pleasanton, CA, USA). Movies were

acquired at 165 0009 nominal magnification with a pixel

size of 0.82 �A�px�1, for a total exposure time of 6 s over

40 frames; the total dose was 39.6 electrons��A�2. The first

data set (Quantifoil R2/2 Cu 300 grids, 0.7 mg�mL�1

BoNT/Wo M-PTC) comprised 2732 recorded movies, and

the second data set (graphene-oxide-coated Quantifoil

R1.2/1.3 Cu 300, 0.1 mg�mL�1 BoNT/Wo M-PTC)

Fig. 7. Cryo-EM reconstruction of BoNT/Wo M-PTC. (A) A representative micrograph. (B) 2D classes that were selected for the 3D recon-

struction and refinement. (C) Image processing pipeline, numbers indicate the number of particles selected for each reconstruction step. (D)

Reconstruction and corresponding angular distribution map. (E) Fourier shell correlation (FSC) curves. (F) Fitting of the final atomic model

into the final sharpened cryo-EM map. (G) Cryo-EM map around an alpha-helix and a beta-sheet.
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comprised 3500 recorded movies. Patch motion correction

and patch CTF estimation were performed in cryoSPARC

[55,56]. All downstream processing was also carried out in

cryoSPARC (Fig. 7). In the first data set, a total of

254 528 particles were picked by blob picker followed by

template picker from 2704 selected movies and after 2D

classification 181 203 particles were selected. In the second

data set, 65 940 particles out of 209 188 picked particles

from 3391 selected movies were selected. Finally, the parti-

cle sets from both datasets were combined for 3D refine-

ment, which included 247 143 particles. Global and local

CTF refinements yielded the final map at 2.97 �A resolu-

tion, calculated based on the gold-standard FSC of 0.143

[57].

Model building

The BoNT/Wo M-PTC model with the exception of the

second bacterial immunoglobin-like domain was manually

built into the map using COOT [58]. The second Big domain

model was produced in AlphaFold [59] and docked into

the map as a rigid body. The whole structure excluding the

second Big domain was refined with real-space refinement

in PHENIX [60]. Protein structure validation was performed

with MOLPROBITY [61]. Data statistics are summarized in

Table 3. The atomic coordinates (PDB ID 8C8G) and the

cryo-EM map (EMD-16475) were deposited in the Protein

Data Bank (PDB) and the Electron Microscopy Data Bank

(EMDB). Protein structure figures were rendered with

PYMOL (Schr€odinger, LLC, New York, NY, USA) and UCSF

CHIMERA [62].
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Table 3. Cryo-EM data collection and refinement.

BoNT/Wo M-PTC

Data collection and processing

Microscope FEI Titan Krios

Nominal magnification 165 0009

Voltage (kV) 300

Defocus range (lm) �1.6 to �3.2

Pixel size (�A) 0.82

Exposure time (s) 6

Number of frames 40

Total flux (e���A�2) 39.6

Number of images 2732 + 3500

Symmetry imposed C1

Initial particle images (no.) 254 528 + 209 188

Final particle images (no.) 181 203 + 65 940

Map resolution (�A) 2.97

FSC threshold 0.143

B-factor applied �100

Refinement

Model composition Chain A-BoNT/Wo,

chain B-NTNH/Wo

Protein residues 2530

Ligands 0

B-factor (�A2) 53.90

r.m.s.d. deviations

Bond lengths (�A) 0.01

Bond angles (°) 0.91

Validation

MolProbity score 1.86

Clashscore 6.69

Poor rotamers (%) 0.88

Ramachandran statistics

Favored (%) 91.81

Allowed (%) 7.95

Outliers (%) 0.24

PDB/EMDB ID 8C8G/16475
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