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The bacterium Clostridium difficile is a spore-forming oppor-
tunistic pathogen and one of the three ‘urgent threats’ clas-
sified by the Centers for Disease Control and Prevention of 

the United States. Disruption of gut flora by antibiotics allows C. 
difficile to colonize the colon, leading to diarrhoea and life-threat-
ening pseudomembranous colitis1. The occurrence of C. difficile 
infection is exacerbated by the emergence of hypervirulent and 
antibiotic-resistant strains2–4. It is now the most common cause of 
antibiotic-associated diarrhoea and gastroenteritis-associated death 
in developed countries, accounting for around 500,000 cases and 
29,000 deaths annually in the United States5.

Two homologous exotoxins, C. difficile toxin A and B (TcdA 
and TcdB), which target and disrupt the colonic epithelium, are 
the major virulent factors of C. difficile6–10. In addition, some 
hypervirulent strains also express a third toxin known as C. diffi-
cile transferase, which may suppress host eosinophilic responses11. 
TcdA (~308 kDa) and TcdB (~270 kDa) consist of four functional 
domains10,12: the N-terminal glucosyltransferase domain (GTD), 
a cysteine protease domain that mediates auto-cleavage and 
releases the GTD into the host cytosol, a central part containing 
both the transmembrane delivery domain and receptor-binding 
domain, and finally a C-terminal combined repetitive oligopep-
tides (CROPs) domain. The GTD glucosylates small GTPases  
of the Rho family, including Rho, Rac and CDC42, and inhibits  

their function, resulting in cytopathic cell rounding and ulti-
mately cell death.

The CROPs domains of TcdA and TcdB bear similarity with 
carbohydrate-binding proteins and may mediate toxin attach-
ment to cell surfaces through various carbohydrate moieties. 
Particularly, CROPs from TcdA was shown to bind the trisaccharide 
Galα1,3Galβ1,4GlcNAc13. It has since been shown to also broadly 
recognize human I, Lewis X, and Lewis Y antigens, as well as glyco-
sphingolipids, which all contain the Galβ1,4GlcNAc motif14,15.

Recent studies have shown that truncating the CROPs only 
modestly reduces the potency of TcdA and TcdB on cultured cells, 
suggesting the existence of CROPs-independent receptors16,17. 
Three candidate receptors have been reported for TcdB: chon-
droitin sulfate proteoglycan 4 (CSPG4), poliovirus receptor-like 3 
(PVRL3) and the Wnt receptor frizzled proteins18–21. Two proteins 
have been previously suggested as potential receptors for full-length 
TcdA: sucrase-isomaltase and glycoprotein 96 (Gp96)22,23. However, 
sucrase-isomaltase is not expressed in the colon epithelium and 
Gp96 resides mainly in the endoplasmic reticulum.

Here we used a truncated TcdA lacking the majority of the CROPs 
domain and carried out genome-wide clustered regularly inter-
spaced short palindromic repeats (CRISPR)–CRISPR-associated 
protein 9 (Cas9)-mediated knockout (KO) screens, which identified 
sulfated glycosaminoglycans (sGAGs) and low-density lipoprotein 
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receptor (LDLR) as CROPs-independent host factors mediating 
binding and entry of TcdA.

Results
CRISPR screens identify host factors for TcdA. To identify the 
CROPs-independent receptors involved in TcdA actions, we used 
a truncated TcdA (TcdA1–1874) lacking the majority of the CROPs 
domain (Supplementary Fig. 1a), which has previously been shown 
to retain high levels of toxicity to multiple cell lines17. We first vali-
dated the toxicity of TcdA1–1874 on various human cell lines using 
the standard cytopathic cell-rounding assay, which measures the 
percentages of rounded cells after incubation with a series of con-
centrations of toxins for 24 h (Supplementary Fig. 1b,c). The toxin 
concentration that induces 50% of cells to become round is defined 
as CR50, and is used to compare the sensitivity of different cell lines 
to TcdA1–1874. HeLa cells are one of the most sensitive human cell 
lines to TcdA1–1874, and were selected to carry out genome-wide 
CRISPR–Cas9 mediated KO screens.

HeLa cells stably expressing Cas9 were transduced with a lentivi-
ral single guide RNA (sgRNA) library (GeCKO v.2) targeting 19,052 
human genes24. The cells were subjected to three rounds of selec-
tion with TcdA1–1874 (40, 80 and 160 pM, Fig. 1a). The genes targeted 

by sgRNAs in surviving cells were identified via next-generation 
sequencing (NGS). We ranked the target genes on the basis of the 
number of unique sgRNAs (y axis) and the total NGS reads (x axis) 
(Fig. 1b). All top-ranked genes were enriched over the three rounds, 
suggesting that mutations in these genes offered survival advantages 
in the presence of TcdA1–1874 (Fig. 1c).

The top-ranked gene encodes LDLR, a well-known recep-
tor for low-density lipoproteins. Many other top-ranked genes 
encode key players in heparan sulfate biosynthesis and sulfa-
tion pathways25, including the glycosyltransferases exostosin-2 
(EXT2) and exostosin-like 3 (EXTL3), the sulfotransferases hepa-
ran sulfate 6-O-sulfotransferase 1 (HS6ST1), N-deacetylase and 
N-sulfotransferase 1 (NDST1), and solute carrier family 35 member 
B2 (SLC35B2), which transports the activated form of sulfate into 
Golgi. Several other enzymes involved in glycosaminoglycan (GAG) 
synthesis were also identified (Supplementary Fig. 2a). Heparan sul-
fate is usually attached to core proteins as heparan sulfate proteo-
glycans (HSPGs). Both HSPGs and LDLR are widely expressed on 
the surface of various cells, and are therefore promising receptor 
candidates for TcdA.

Among the top-50 ranked genes, three (UGP2, PI4KB and 
ATP6V0D1) were also found in the top list of genes in our previous  
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Fig. 1 | Genome-wide CRISPR–Cas9-mediated screen identifies host factors for TcdA. a, Schematic of the screening process using TcdA1–1874 on HeLa cells. 
Round zero (R0) represents cells at the beginning of the screen. Rounds 1, 2 and 3 (R1, R2 and R3) represent surviving cells after exposure to TcdA1–1874 
sequentially at the indicated toxin concentrations. b, Genes identified after R3 were ranked and plotted. The y axis shows the number of unique sgRNAs 
for each gene. The x axis represents the number of sgRNA reads for each gene. The top-ranking genes are colour-coded and grouped on the basis of their 
functions. The dashed red line indicates the top-ranked hits. c, The NGS reads from R0 to R3 for the top-20 ranked (ordered by NGS reads) genes in R3 
were colour-coded and plotted. The diameter of the circle represents the number of unique sgRNAs detected for the gene. All top-20 ranked genes were 
progressively enriched from R0 to R3.
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genome-wide CRISPR–Cas9 screen using TcdB1–1830 (Supplementary 
Fig. 2b). UGP2 encodes uridine diphosphate-glucose pyrophos-
phorylase, which synthesizes uridine diphosphate-glucose, a co-
factor required for TcdA and TcdB to glucosylate small GTPases26. 
ATP6V0D1 is a component of vacuolar-type H+-ATPase for acidi-
fication of endosomes, which is an essential condition to trigger 
translocation of TcdA and TcdB27,28. PI4KB is a key player in phos-
pholipid metabolism and signalling, and its role in toxin action 
remains to be established.

Other notable top hits include COG5, COG7, TMEM165 and 
RIC8A. COG5 and COG7 are members of the conserved oligo-
meric Golgi (COG) complex29. In fact, all eight COG members  
were identified in the final round of screening (Supplementary  
Fig. 2c). TMEM165 is a multi-pass transmembrane protein local-
ized to the Golgi. Although the exact function of the COG complex 
and TMEM165 remains to be fully established, mutations in COG 
complex and TMEM165 both result in congenital disorders of gly-
cosylation29,30, and affect multiple glycosylation pathways including 
biosynthesis of heparan sulfate31–33. RIC8A is a guanine nucleotide 
exchange factor and its role in TcdA action remains to be validated.

We also performed a parallel genome-wide CRISPR–Cas9-
mediated KO screen using full-length TcdA on HeLa cells 
(Supplementary Fig. 2d). However, this screen only yielded UGP2 
as the top hit. Two other hits, SGMS1 and ZNF283, were barely over 
our threshold. SGMS1 regulates lipid raft formation and may affect 
the endocytosis process. ZNF283 is a cytosolic protein, and its role 
in TcdA action remains to be validated. Lack of potential receptor 
candidates in the top hits suggests that full-length TcdA may utilize 
multiple receptors and entry pathways.

sGAGs contribute to cellular entry of TcdA1–1832. TcdA1–1874 still 
contains a short fragment of the CROPs domain. Therefore, we fur-
ther generated a truncated TcdA (TcdA1–1832) that deletes the entire 
CROPs to exclude any potential contribution from the residual 
CROPs domain (Supplementary Fig. 1a). TcdA1–1874 and TcdA1–1832 
showed similar potency on HeLa cells in the cytopathic cell-round-
ing assays (Supplementary Fig. 1b).

Using TcdA1–1832, we first validated the role of EXT2 and EXTL3, 
as they are specifically required for the elongation of the heparan 
sulfate chain, but not other types of GAGs. We generated EXT2 and 
EXTL3 KO HeLa cell lines using the CRISPR–Cas9 system. Both 
cell lines showed a reduction of cell surface heparan sulfate levels 
compared with wild-type cells, as measured by flow cytometry 
analysis using a heparan sulfate antibody (Supplementary Fig. 3a). 
Both EXT2 and EXTL3 KO cells showed a modest four-to-fivefold 
reduction in sensitivity to TcdA1–1832 compared with wild-type cells, 
whereas their sensitivities towards TcdB1–1830 remained the same as 
wild-type cells (Fig. 2a).

Several top-ranked genes identified in our screen, including 
SLC35B2, NDST, HS6ST, HS2ST and HS3ST, are involved in sulfation 
of GAGs25 (Supplementary Fig. 2a). To examine the role of sulfation, 
we generated three single clones of SLC35B2 KO HeLa cells using the 
CRISPR–Cas9 approach. Reduction of heparan sulfate in these cells 
was confirmed by flow cytometry analysis (Supplementary Fig. 3b). 
These cell lines all showed around tenfold reduction in sensitivity 
towards TcdA1–1832 compared with wild-type cells, whereas their sen-
sitivities towards TcdB1–1830 were not changed (Fig. 2b). The reduced 
sensitivity of SLC35B2 KO cells to TcdA1-1832 was further confirmed 
by immunoblotting for RAC1 glucosylation (Supplementary Fig. 
4a). Finally, SLC35B2 KO cells also showed approximately threefold 
reduction in sensitivity to full-length TcdA (Fig. 2c).

Characterizing the specificity of TcdA–sGAGs interactions. We 
next carried out competition assays to further validate the role of 
sGAGs. First, we used surfen (bis-2-methyl-4-amino-quinolyl-6-
carbamide), which is a small molecule that binds to and neutralizes 

negative charges on all sGAGs34. Pre-incubation of cells with surfen 
protected HeLa cells from TcdA1-1832 in a concentration-dependent 
manner, whereas it offered no protection from TcdB1–1830 (Fig. 2d 
and Supplementary Fig. 5a). Similar results were observed with 
Huh7 cells (Supplementary Fig. 5b).

To understand the selectivity of TcdA–GAG interactions, we 
carried out competition assays using a panel of GAGs including 
heparan sulfate, heparin, de-N-sulfated heparin, N-acetyl-de-O-
sulfated heparin, chondroitin sulfate and dextran sulfate. Heparin 
is a highly sulfated variant of heparan sulfate and it is widely uti-
lized as an anticoagulant. In addition, we also tested synthetic 
sulfated molecules GM-1111 and sulfated cyclodextrin. GM-1111 
contains the same carbohydrate moieties and sulfation groups as 
heparan sulfate, but with distinct glycosidic bonds. It has been 
developed as a heparan sulfate mimic with reduced anticoagula-
tion activities35. Sulfated cyclodextrin is a small molecule that 
is distinct from GAGs. Non-sulfated GAG hyaluronic acid and 
polysaccharide cellulose were also examined. These molecules are 
shown in Supplementary Fig. 6.

Pre-incubation of TcdA1–1832 with heparan sulfate, heparin, chon-
droitin sulfate, dextran sulfate, GM-1111 and sulfated cyclodex-
trin all reduced the level of cell rounding, whereas hyaluronic acid 
showed no effect (Fig. 2e). These results suggest that TcdA may not 
recognize heparan sulfate specifically, but rather interacts mainly 
with the sulfation group. Furthermore, the finding that de-N-sul-
fated heparin protected cells from TcdA1-1832, whereas N-acetyl-de-
O-sulfated heparin did not offer any protection (Fig. 2e), suggests 
that TcdA preferentially recognizes O-sulfation.

To further characterize direct TcdA–sGAG interactions, we used 
bio-layer interferometry (BLI) assay by immobilizing biotinylated 
heparin onto the probe. Binding of TcdA to the immobilized hepa-
rin would result in a shift in the light interference pattern that can be 
monitored in real time. Biotinylated hyaluronate and cellulose were 
analysed in parallel as controls. Both full-length TcdA and TcdA1–1874  
showed robust binding to biotin–heparin, but not to biotin–hyal-
uronate and biotin–cellulose (Fig. 2f and Supplementary Fig. 7a). 
TcdA–heparin interactions appear to be influenced by the ionic 
strength of the buffer: higher salt concentrations reduce heparin–
TcdA interactions (Supplementary Fig. 7b). At 150 mM salt concen-
tration, the apparent dissociation constants (KD) for TcdA–heparin 
and TcdA1–1874–heparin are at similar levels (85.5 nM for TcdA1–1874 
versus 23.2 nM for full-length TcdA; Supplementary Fig. 7c–e).

LDLR contributes to cellular entry of TcdA1–1832. To validate the 
role of LDLR, we generated LDLR KO HeLa cells using the CRISPR–
Cas9 system. Three single-KO clones were established and the loss 
of LDLR expression was confirmed in the clones by immunoblot 
analysis (Fig. 3a). All three KO lines showed reduced sensitivity by 
about sevenfold to TcdA1–1832, whereas their sensitivity to TcdB1–1830 
remained the same as that of wild-type cells (Fig. 3b). The reduced 
sensitivity of LDLR KO cells to TcdA1–1832 was also confirmed by 
immunoblot against RAC1 glucosylation (Supplementary Fig. 4b). 
LDLR−/− cells also showed around threefold reduction in sensitivity 
to full-length TcdA, thus validating the role of LDLR in cytotoxic 
activity of full-length TcdA (Fig. 3c). The sensitivity to TcdA was 
restored when LDLR KO cells were transfected with mouse Ldlr 
(Fig. 3d), which is not targeted by the sgRNA. Furthermore, Huh7 
LDLR−/− cells, which were previously generated and validated36, also 
showed reduced sensitivity to TcdA1–1832 compared with wild-type 
Huh7 cells (Supplementary Fig. 8).

We further carried out a competition assay using the soluble 
extracellular domain of LDLR (residues 22–788, LDLR22–788). 
Co-incubation of LDLR22–788 with TcdA1–1832 (200:1) reduced the 
percentage of rounded cells (Fig. 3e). LDLR belongs to a large fam-
ily of proteins including VLDLR, LRP1, LRP1b, LRP2 (also known 
as megalin), LRP5, LRP6 and LRP8 (also known as ApoER2), which 
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share similar domains with LDLR and often act as redundant recep-
tors for many LDLR ligands. Receptor associated protein (RAP) 
binds tightly to most LDLR family members and its binding inhib-
its binding of LDL and many other ligands37–39. Adding RAP to the  
medium further reduced the sensitivity of LDLR KO cells to TcdA1–1832  
(Fig. 3f), suggesting that other LDLR family members also contrib-
ute to entry of TcdA1–1832 into cells.

To examine binding of TcdA1–1874 to LDLR in  vitro, we used 
purified Fc-tagged extracellular domain of LDLR (LDLR22–788–Fc) 
produced in HEK293 cells. This LDLR22–788–Fc mediated strong 
binding of RAP, but we did not detect direct binding of TcdA1–1874 
to LDLR22–788-Fc in either BLI assays or an alternative dot blot assay 
(Supplementary Fig. 9). These results suggest that either that TcdA1–1874  
binding to LDLR is weak or that their interactions may require addi-
tional cellular factors.

sGAGs are major cellular attachment factors for TcdA1–1874. To 
further understand the role of LDLR and sGAGs, we generated 
LDLR−/− SLC35B2−/− double-KO cell lines by knocking out LDLR 
from HeLa SLC35B2−/− cells using the CRISPR–Cas9 approach. Two 
single-cell clones were established, and lack of LDLR expression was 
confirmed by immunoblot (Fig. 4a). However, these two double-
KO cell lines did not further increase their resistance to TcdA1–1832 
compared with LDLR and SLC35B2 single-KO cells (Fig. 4b and 
Supplementary Fig. 4c). Moreover, overexpression of exogenous 
mouse Ldlr by transient transfection did not increase the sensitivity 
of SLC35B2−/− cells to TcdA1–1832 (Fig. 4c). These data suggest that 
LDLR and sGAGs are not redundant receptors, and that they could 
act cooperatively. We therefore examined binding of TcdA1–1874 to  
wild-type versus LDLR−/− and SLC35B2−/− HeLa cells, using TcdA1–1874  
directly labelled with a fluorescent dye. As shown in Fig. 4d, LDLR−/− 
cells showed similar overall TcdA1–1874 binding as wild-type cells. 
By contrast, binding of TcdA1–1874 to SLC35B2−/− cells was dimin-
ished. These results suggest that sGAGs are the major attachment  

factor mediating binding of TcdA1–1874 on cell surfaces under our 
assay conditions.

sGAGs are attachment factors for TcdA1–1874 in the colonic epithe-
lium. The colonic epithelium is the pathologically relevant target of 
TcdA. sGAGs are abundant both in the intestinal mucosa and on the 
basolateral side of the epithelium40–42. To examine the contribution of 
sGAGs to TcdA binding to the colonic epithelium, we used a colon 
loop ligation assay20. In brief, fluorescence-labelled TcdA1–1874 was 
injected into a ligated colon segment and incubated for 30 min. Colon 
tissues were then dissected and fixed. TcdA1–1874 showed strong bind-
ing to the apical side of the colonic epithelium and binding appears 
to extend into the lumen (Fig. 4e). Co-injecting surfen reduced bind-
ing of TcdA1–1874 (Fig. 4e). Similarly, heparin, GM-1111 and sulfated 
cyclodextrin all reduced binding of TcdA1–1874, whereas hyaluronic 
acid showed no effect (Fig. 4f). These results suggest that sGAGs are 
major attachment factors in the colon epithelium for TcdA1–1874.

Blocking sGAG–TcdA interactions reduces TcdA toxicity in the 
colon. We next examined the contribution of sGAGs-mediated 
binding in the context of full-length TcdA in vivo. Injecting fluo-
rescence-labelled full-length TcdA into the ligated colon loop for 
30 min resulted in robust binding to the apical side of the colonic 
epithelium (Fig. 5a). Co-injecting recombinantly produced CROPs 
fragment reduced binding of TcdA, consistent with the finding that 
the CROPs region mediates TcdA binding to cells43. Co-injecting 
surfen with TcdA reduced binding of TcdA, confirming that sGAGs 
contribute to binding of full-length TcdA to the colonic epithelium 
(Fig. 5a). Similarly, co-injection with GM-1111 or sulfated cyclodex-
trin also reduced TcdA binding to the colonic epithelium (Fig. 5b).  
Interestingly, combining CROPs and surfen together largely  
abolished binding of TcdA to the colonic epithelium (Fig. 5a). Thus, 
both CROPs-mediated and sGAGs-mediated binding contribute to 
TcdA binding to the colonic epithelium.
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To further examine the relevance of sGAG–TcdA interac-
tions for TcdA-induced pathogenesis in vivo, we utilized a mouse 
caecum-injection model that was previously established to assess 
pathogenesis of TcdA and TcdB44. In brief, TcdA or TcdA premixed 
with inhibitors was injected into the caecum. Mice were allowed to 
recover for 6 h before euthanization. The caecum and the ascend-
ing colon were collected and weighed to assess the degree of fluid 
accumulation. The caecum tissue was also fixed and subjected to 
hematoxylin and eosin staining and histological score analysis 
based on four criteria (disruption of the epithelium, haemorrhagic 
congestion, mucosal oedema and inflammatory cell infiltration) on 

a scale of 0–3 (normal, mild, moderate or severe). Injection of TcdA 
induced fluid accumulation in the colon tissues, severe mucosal 
oedema, mild-to-moderate disruption of the epithelium, haemor-
rhagic congestion and inflammatory cell infiltration (Fig. 5c,d).

Finding a suitable inhibitor for use in the caecum-injection model 
was challenging, as heparan sulfate and many sGAG mimics induced 
haemorrhage in the intestine and colon after incubation for 6 h. This 
is likely to be caused by their anticoagulation activity. Surfen alone 
at the concentration required to reduce TcdA binding also induced 
damage to colonic tissues after incubation for 6 h. After surveying 
many different sGAG mimics, we found that GM-1111, which was 
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specifically developed to reduce anticoagulation activity, can be used 
at the dose that reduces TcdA binding without itself inducing vis-
ible tissue damage. Co-injecting GM-1111 with TcdA significantly 
reduced fluid accumulation in the colon (caecum weight; Fig. 5c) and 
overall tissue damage as evidenced by histological scoring (Fig. 5d).

Discussion
The presence of numerous negatively charged sulfate groups in 
sGAGs provides an ideal multivalent landing pad for proteins and 
macromolecules through electrostatic interactions. These sulfate 
groups are known to interact with a large array of endogenous 
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ligands, such as fibroblast growth factors, vascular endothelial 
growth factor, transforming growth factor β, chemokines and cyto-
kines45. Unsurprisingly, these proteoglycans are also exploited by 
a long list of viral, bacterial and parasitic pathogens as attachment 
factors46. As TcdA is capable of binding to isolated sGAGs, it should 
be able to bind both to proteoglycans containing sGAGs as well as 
to free sGAGs on the cell surface and in the extracellular matrix. 
The exact binding sites for sGAGs in TcdA remain to be determined 
and it is possible that multiple positively charged surface regions of 
TcdA are involved.

LDLR belongs to a family of structurally related receptors, many 
of which act as redundant receptors for various ligands and viruses47. 
Interestingly, the LDLR family member LRP1 was previously estab-
lished as the receptor for TpeL toxin39, which belongs to the same 
toxin family as TcdA but naturally lacks the CROPs domain. It is 
likely that LDLR family members other than LDLR can also con-
tribute to TcdA1–1832 entry, as RAP further reduces the sensitivity of 
LDLR KO cells.

LDLR family receptors rapidly and constitutively recycle between 
cell membranes and endosomes. This provides an ideal mechanism 
by which to mediate endocytosis into cells. Indeed, LDLR has been 
exploited as a receptor for many viruses, such as vesicular stomatitis 
virus (VSV), hepatitis C virus and the minor group common cold 
virus36,38,48. Although it remains unknown whether TcdA is capable 
of recognizing LDLR family members directly on cell surfaces, the 
major contribution of LDLR members is likely to occur through 
facilitation of endocytosis of TcdA bound to sGAGs. Similar syner-
gistic actions between proteoglycans and LDLR family members are 
common for endogenous ligands. For instance, HSPG contributes 
to the capture of PCSK9 on cell surfaces and subsequently presents 
PCSK9 to LDLR49. Furthermore, many viruses that utilize HSPG 
as an initial attachment factor recruit additional protein receptors 
to mediate their endocytosis50. For instance, respiratory syncytial 
virus uses HSPG as an attachment factor and ICAM1 and VLDLR 
as additional protein receptors50. Such a ‘two-step’ model allows the 
pathogens and toxins to both maximize their chance of landing on 
the cell surface and take advantage of rapid endocytosis and recy-
cling of LDLR family members.

A combination of surfen and the CROPs domain protein largely 
abolished binding of full-length TcdA to the colonic epithelium, 
demonstrating that TcdA attaches to the colonic epithelium via at 
least two independent binding interfaces: interactions with sGAGs 
in a CROPs-independent manner and interactions with carbohy-
drate moieties via the CROPs. These results are consistent with the 
previous finding that TcdA1–1874 and TcdA1875–2710 do not compete 
with each other, whereas both can reduce binding of full-length 
TcdA to cells17. These results further support a previously pro-
posed ‘two-receptor’ model for TcdA10,16,39. Finally, GM-1111 alone 
reduced the toxicity of TcdA in the caecum-injection model in vivo, 
demonstrating the therapeutic potential of protecting colonic tis-
sues from TcdA by targeting TcdA–sGAGs interactions.

Methods
Materials. HeLa (H1, CRL-1958), HT-29 (HTB-38), CHO-C6 and 293T 
(CRL-3216) cells were originally obtained from ATCC. They tested negative for 
mycoplasma contamination, but have not been authenticated. Huh7 and Huh7 
LDLR−/− cells were provided by Y. Matsuura (Osaka University)36. The following 
mouse monoclonal antibodies were purchased from the indicated vendors:  
RAC1 (23A8, Abcam), non-glucosylated RAC1 (clone 102, BD Biosciences), 
β-actin (AC-15, Sigma) and heparan sulfate (F58-10E4, mouse IgM, Amsbio). 
Rabbit monoclonal IgG against LDLR (EP1553Y) was purchased from Abcam. 
Chicken polyclonal IgY (753A) against TcdA was purchased from List  
Biological Labs. Statistical analysis was performed using OriginPro 8  
(v.8.0724, OriginLab) software.

Protein purification. Recombinant TcdA (from C. difficile strain VPI 10463), 
TcdA1–1874, TcdA1–1832 and CROPs (TcdA1875–2710) were cloned into modified 
pWH1520 vector, and TcdB1–1830 was cloned into pHIS1522 vector, expressed in 

Bacillus megaterium and purified as His6-tagged proteins. The expression plasmid 
pQTEV-LRPAP1 (31327) encoding RAP was obtained from Addgene and RAP 
was purified as a His6-tagged protein. Genes encoding the ectodomain of human 
LDLR (residues 22–788) and IgG1 Fc were fused and cloned into pHLsec vector 
(provided by A. Jonathan (Harvard Medical School)). For the expression of Fc-
tagged LDLR22–788, HEK293T cells were transfected with Lipofectamine 3000 
(Invitrogen). Transfected cells were grown for 5 h, and the culture medium was 
then replaced with serum-free medium for 4 d. LDLR22–788–Fc in the culture 
medium was collected and purified.

Genome-wide CRISPR–Cas9 screening with TcdA1–1874. The HeLa CRISPR 
genome-wide knockout library was generated as previously described20. In brief, 
the GeCKO v2 library is composed of two sublibraries. Each sublibrary contains 
three unique sgRNA per gene and was independently prepared and screened. 
HeLa–Cas9 cells were transduced with sgRNA lentiviral library at a multiplicity of 
infection of 0.2. For each CRISPR sublibrary, 7.9 × 107 cells were plated onto three 
15-cm cell culture dishes to ensure sufficient sgRNA coverage, with each sgRNA 
being represented around 1,200 times. These cells were exposed to TcdA1–1874 for 
48 h. Cells were then washed three times to remove loosely attached cells. The 
remaining cells were cultured with toxin-free medium to ~70% confluence and 
subjected to the next round of screening with higher concentrations of toxins. 
Three rounds of screenings were performed with TcdA1–1874 (40, 80 and 160 
pM). Remaining cells from each round were collected and their genomic DNA 
was extracted using the Blood and Cell Culture DNA mini kit (Qiagen). DNA 
fragments containing the sgRNA sequences were amplified by PCR using primers 
lentiGP-1_F (AATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCG) 
and lentiGP-3_R (ATGAATACTGCCATTTGTCTCAAGATCTAGTTACGC). 
NGS (Illumina MiSeq) was performed by Genewiz.

Generating HeLa KO cell lines. To generate EXT2−/−, EXTL3−/− and LDLR−/− 
cells, the following sgRNA sequences were cloned into LentiGuide-Puro vectors 
(Addgene) to target the indicated genes: 5′-CGATTACCCACAGGTGCTAC-3′ 
(EXT2), 5′-GAGGTGAGCATCGTCATCAA-3′ (EXTL3) and 
5′-CCAGCTGGACCCCCACACGA-3′ (LDLR). HeLa–Cas9 cells were 
transduced with lentiviruses that express the sgRNAs. Mixed populations of 
infected cells were selected with puromycin (2.5 μg ml−1). For LDLR knockouts, 
three single colonies were isolated (LDLR−/− no. 4, LDLR−/− no. 6 and LDLR−/− 
no. 7). To generate SLC35B2−/− cells, a sgRNA targeting exon 1 of SLC35B2 
(5′-GCTTTATGGTACCTGGCTAC-3′) was cloned into lentiCRISPR v.2-Blast 
(Addgene plasmid 83480). Lentivirus was generated by transfecting 293T cells with 
lentiCRISPR v.2-Blast-SLC35B2sgRNA, pCD/NL-BH*DDD and pCAGGS-VSV-G. 
Hela–Cas9 cells were transduced with the lentivirus and selected with 10 µg ml−1 
blasticidin. Three single colonies were isolated and validated (SLC35B2−/− no. 1, 
SLC35B2−/− no. 3 and SLC35B2−/− no. 5). SLC35B2−/−LDLR−/− double-KO cells were 
generated from SLC35B2−/− no. 5 by transducing lentiviruses that express LDLR 
sgRNA (5′-CCAGCTGGACCCCCACACGA-3′). Stable SLC35B2−/−LDLR−/−  
cells were selected with puromycin (2.5 μg ml−1) and hygromycin B (200 μg ml−1). 
The deficiency of LDLR in LDLR−/− and SLC35B2−/−LDLR−/− cells was  
validated by immunoblot.

FACS analysis. In brief, cells were collected with 1 mM EDTA in PBS and 
subsequently re-suspended in PBS with 1% BSA. Cells were incubated with either 
the 10E4 monoclonal antibody against heparan sulfate (1:400), or mouse IgM 
(1:200; ab18401, Abcam) for 1 h on ice. Cells were washed twice with PBS and 
incubated with goat anti-mouse IgG/IgM Alexa488 (1:1,000; A10680, Molecular 
Probes) for 1 h on ice, washed twice, and followed by single-cell sorting using a 
FACS MoFlo Astrios EQ cell sorter(Beckman Coulter). Data were analysed using 
FlowJo software (FlowJo).

Cytopathic cell-rounding assay. The cytopathic effect of TcdA and TcdB was 
analysed using the standard cell-rounding assay. In brief, cells were exposed to 
TcdA, TcdA1–1874, TcdA1–1832 or TcdB1–1830 for 24 h, and phase-contrast images of cells 
were recorded (Olympus IX51, ×10–×20 objectives). A zone of 300 × 300 µm was 
selected randomly, containing 50–150 cells. The numbers of normal and round-
shaped cells were counted manually. The percentage of round-shaped cells was 
analysed using the Origin software.

Competition assays with GAGs or ecto-domain of LDLR. TcdA1–1832 (2 nM) was 
pre-mixed with or without 1 mg ml−1 heparan sulfate (Sigma, H7640), chondroitin 
sulfate (Sigma, C9819), dextran sulfate (Sigma, D4911), hyaluronic acid 
(Sigma, 53747), heparin (Fisher Bioreagents, BP252450), de-N-sulfated heparin 
(Carbosynth, YD58544), N-acetyl-de-O-sulfated heparin (Carbosynth, YD58545), 
sulfated cyclodextrin (Sigma-Aldrich, 494542-5 G), GM-1111 (Glycomira) or 
400 nM LDLR22–788 in fresh DMEM medium and incubated at 37 °C for 20 min. The 
mixture was then added to the cells. Cells were further incubated at 37 °C and the 
percentage of rounded cells over time was recorded and analysed.

Competition assays with RAP or surfen. The cells were pre-incubated with  
RAP or surfen in the medium at indicated concentrations at 37 °C for 20 min.  
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The medium was then supplemented with 2 nM TcdA1–1832 and cells were  
incubated further at 37 °C and the percentage of rounded cells over time was 
recorded and analysed.

Dot blot assay. The indicated amounts of RAP, TcdA1–1832, and TcdB1–1830 were 
spotted onto a nitrocellulose membrane and allowed to dry completely in air.  
The membrane was then blocked with 5% skimmed milk for 1 h at room 
temperature followed by overnight incubation with LDLR22–788–Fc at 4 °C.  
The bound LDLR22–788–Fc was detected with a monoclonal antibody against  
human Fc fragment. The experiments were repeated in triplicate.

Surface binding of TcdA1–1874 on HeLa cells. TcdA and TcdA1–1874 were labelled 
using an Alexa 555 antibody labelling kit (A20187, ThermoFisher Scientific) 
following the manufacturer’s instruction. Wild-type, SLC35B2−/− or LDLR−/− HeLa 
H1-Cas9 cells were incubated with 5 nM Alexa 555-labelled TcdA1–1874 in PBS for 
30 min on ice. Cells were washed three times with ice-cold PBS and fixed with 4% 
paraformaldehyde. Cell nuclei were labelled with Hoechst dye. Confocal images 
were captured with the Ultraview Vox Spinning Disk Confocal System.

BLI assay. The binding affinities between TcdA1–1874 and heparin were measured 
by BLI assay using the Blitz system (ForteBio). In brief, biotinylated heparin 
(20 μg ml−1, B9806, Sigma-Aldrich), biotin–cellulose (Creative PEGWorks, CE501) 
or biotin–hyaluronate–biotin (Sigma, B1557) was immobilized onto capture 
biosensors (Dip and Read Streptavidin, ForteBio) and balanced with indicated 
buffers. The biosensors were then exposed to TcdA1–1874, followed by washing. 
Binding affinities (KD) were calculated using the Blitz system software (ForteBio). 
The experiments were repeated in triplicate.

Colon loop ligation assay. All animal studies were conducted in accordance with 
ethical regulations under protocols approved by the Institute Animal Care and 
Use Committee (IACUC) at Boston Children’s Hospital (no. 3028). Statistical 
consideration was not used to determine the sample size of mice. Animals were 
distributed to each experimental group randomly. Experiments and data analysis 
were carried out without blinding. Colons from adult CD1 mice (6–8 weeks, 
both male and female, from Envigo) were dissected out and incubated in PBS 
on ice. A ~2 cm loop in the ascending colon was sealed with silk ligatures. One 
hundred microlitres of Alexa555-labelled TcdA1–1874 or TcdA (5 nM each) in PBS 
was injected through an intravenous catheter into the sealed colon segment with 
or without TcdA1875–2710 (150 nM) and/or surfen (5 µM), GM-1111 (1 mg ml−1), 
sulfated and cyclodextrin (1 mg ml−1). The colon segments were incubated on 
ice for 30 min, then cut open, washed with PBS, fixed with paraformaldehyde 
and subjected to cryosectioning into sections 10 µm thick. Confocal images were 
captured with the Ultraview Vox Spinning Disk Confocal System. Toxin binding 
was quantified using ImageJ software. The binding signal intensity was averaged 
based on the length of the epithelium. Three images were analysed and the P value 
was calculated by Student’s t-test.

Caecum-injection assay. Mice (CD1, 6–8 weeks of age, male and female, 
Envigo) were anaesthetised with 3% isoflurane after overnight fasting. A midline 
laparotomy was performed. TcdA (4 µg in 100 µl saline), TcdA premixed with GM-
1111 (4 µg TcdA + 0.5 mg ml−1 GM-1111), or saline was injected into the caecum 
through the ileocaecal junction. The gut was then returned to the abdomen. The 
incision was closed with stitches and mice were allowed to recover. After 6 h, mice 
were euthanized and the caecum plus the ascending colon (~1.5 cm) was excised 
and weighed. The caecum tissue was fixed with 10% phosphate buffer formalin 
and embedded in paraffin. Tissue sections were subjected to haemotoxylin and 
eosin staining for histological score analysis based on four criteria (disruption of 
the epithelium, haemorrhagic congestion, mucosal oedema and inflammatory cell 
infiltration) on a scale of 0–3 (normal, mild, moderate or severe).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon request.
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