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Abstract

Purpose of review—Botulinum neurotoxin A (BoNT/A), or Botox, is a popular option for 

overactive bladder (OAB) and neurogenic bladder (NGB) with or without incontinence. This 

review aims to discuss the clinical outcomes of BoNT in adult and pediatric bladder conditions, 

and introduces the potential benefit of novel, engineered neurotoxins beyond BoNT/A.

Recent findings—A large volume of evidence supports the use of Botox for OAB (to reduce 

urgency, frequency and incontinence episodes), and for NGB (to decrease incontinence and 

improve bladder capacity and detrusor pressures). Botox is now also Food & Drug Administration 

(FDA)-approved for pediatric neurogenic detrusor overactivity. However, urinary retention, 

diminished response over time and treatment failures are prevalent issues with Botox. Modifying 

natural BoNTs or forming chimeric toxins are alternatives to BoNT/A that may have higher 

efficacy and lower side-effect profile. One example is BoNT/BMY-WW. This novel engineered toxin 

binds to a more commonly expressed synaptotagmin receptor, with potentially more potent 

paralytic effect and less capacity for systemic diffusion.

Summary—Novel engineered neurotoxins may be the next frontier in OAB and NGB therapy.
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INTRODUCTION

Since their Food & Drug Administration (FDA) approval 7 years ago, botulinum 

neurotoxins (BoNTs) have gained immense popularity in the treatment of overactive and 

neurogenic bladder (NGB). Supported by an abundance of clinical efficacy data, Botox is 

now a mainstay in treatment algorithms in both European and American Urologic Society 

Guidelines. BoNTs are a family of highly potent toxins, and as humans are not routinely 

vaccinated against BoNTs, these toxins can be used for therapeutic purposes [1■]. There are 
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seven BoNT serotypes, but in urology, treatment of overactive bladder (OAB) or neurogenic 

bladder (NGB) has most commonly relied on onabotulinumtoxinA (BoNT/A), known as 

Botox (Allergan, Irvine, CA). Other commercially available BoNT/A products for the 

bladder include Dysport (Ipsen, Slough, UK) and Xeomin (Merz Pharma, Frankfurt, 

Germany).

In this review, we briefly discuss the clinical use of BoNT for the bladder and highlight the 

limitations therein. We then discuss toxin mechanisms and receptor targets, so as to 

introduce the potential of novel, engineered neurotoxins beyond BoNT/A.

CLINICAL INDICATIONS AND OUTCOMES

The two most well-studied indications for BoNT/A have been for bladder-level conditions. 

The first, OAB (urgency, frequency and nocturia, with or without incontinence), has 

significant negative impacts on quality of life and sexual function [2-5]. In a recent study of 

over 9000 women, bothersome OAB was found in half of women aged 55–64, with 

incidence increasing with advancing age and BMI [6]. Guidelines for OAB treatment 

recommend a tiered approach of options with increasing invasiveness, reversibility and side-

effect profile [7■]. For patients who are refractory to behavioral therapy, oral anti-

muscarinic or α-3 agonist agents, whether because of noncompliance from side-effects or 

from a lack of clinical response, third-tier options include detrusor BoNT/A administration 

[8]. The aim is to target sensory and motor nerve endings running under the luminal surface 

of the bladder wall [9].

Numerous studies have shown the efficacy and cost-effectiveness of BoNT/A, even as a first-

line agent [10]. Since the initial clinical work by Schurch et al. [11], several placebo-

controlled trials have been conducted to validate the efficacy and tolerability of BoNT/A 

[12-16]. As a whole, patients have reduced urgency, frequency, incontinence episodes, 

nocturia and pad usage, [17,18■], as well as improved urodynamic parameters [15]. 

Importantly, quality of life, sexual function and satisfaction improved with treatment 

compared to placebo [19,20], with the majority of patients opting for retreatment with 

injections if needed [21].

The second FDA-approved indication for BoNT/A is in detrusor overactivity incontinence 

from an underlying neurologic condition. Management of the lower urinary tract in the 

setting of spinal cord injury, spinal dysraphism or degenerative neurologic disease [i.e. 

multiple sclerosis (MS)] employs the same principles as anticholinergic manipulation in 

OAB. The goals of NGB management are to achieve a low pressure, high-volume reservoir 

without incontinence and to maintain safe intravesical pressures to preserve renal function, 

and reduce the morbidity of NGB [22].

Although the spectrum of lower urinary tract dysfunction ranges from detrusor level 

(areflexia and hyperreflexia) to bladder outlet level (incompetent, fixed or dyssynergic 

sphincter) problems, BoNT/A has been most effective in improving detrusor overactivity and 

compliance [23]. For those patients with persistent incontinence between catheterizations, or 

with bothersome OAB symptoms, BoNT/A injections provide urinary continence, enhanced 
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bladder capacity and lower detrusor pressures on urodynamics, with minimal side-effects 

and high patient satisfaction [11]. These findings were validated and reproduced in several 

randomized, placebo-controlled trials, with injections of 200–300U [24,25,26■,27]. In one 

international, multicenter, double-blind placebo-controlled trial studying NGB-related 

detrusor overactivity, injections of 200–300U of BoNT/A decreased the mean incontinence 

episodes by 21–23 per week (from a baseline of 32 episodes), compared to a 9 episode per 

week reduction in the placebo group. Bladder capacity and detrusor pressures improved as 

well, and the treatment effect lasted approximately 250 days before a request for retreatment 

[26■]. These trials, among others, also showed an improvement in quality of life [26■,28]. 

As seen in OAB treatment, therapeutic benefit of BoNT/A wears off over time, requiring 

repeat injections. In addition, not all patients respond to BoNT/A for symptom or detrusor 

pressure improvement, whether from tolerance against the medication or from unwanted 

side-effects.

BoNT/A use in pediatric patients with neurogenic detrusor overactivity (NDO) was 

approved by the FDA in June 2020. In general, cohort studies using BoNT/A in pediatrics, 

for indications similar to adult patients, have produced promising results [29-31]. However, 

outcomes have not been as successful as in adults. For refractory OAB, children receiving 

weight-based doses of BoNT/A expectedly have improvements in bladder capacity, a 

decrease in urinary frequency and incontinence episodes, as well as satisfaction [32-34]. 

Repeat injections are safe [35], and long-term follow up of up to 35.4 months, across 

multiple cohorts, showed that a third of patients respond completely, whereas the rest require 

continued oral anticholinergic therapy or repeated injections to control their symptoms, 

despite initial BoNT/A injection.

In the pediatric myelomeningocele patient with NGB, studies have shown that BoNT/A may 

offset or delay the need for augmentation enterocystoplasty in patients with unsafe detrusor 

pressure or refractory detrusor overactivity incontinence [36-38]. As a composite, 293 

pediatric spina bifida patients across 12 publications were analyzed in a systematic review 

by the French Referral Network of Spina Bifida [39]. Rates of incontinence resolution 

ranged from 32 to 100%, detrusor pressures decreased by 32–54%, cystometric capacities 

increased from 27 to 162% and compliance improved from 28 to 176%. A multicenter, 

randomized, double-blind study that supported the recent FDA approval of BoNT/A for 

urinary incontinence in patients with NDO showed a decrease in mean incontinence 

episodes by 1.0–1.4 from a baseline of 2.5–3.5 per day, and first morning catheterization (or 

capacity) increased by 20–60 mL at week 2, and up to 70 mL by week 6. More than two 

thirds of patients had a positive response to a single injection at 6 and 12 weeks. Detrusor 

pressures decreased, especially with higher doses (12cmH2O decrease at 50U, 20cmH2O at 

100U and 25cmH2O at 200U), and retreatment requests ranged from 24 to 30 weeks 

(unpublished data).

ISSUES WITH BOTULINUM NEUROTOXIN A

Although well tolerated overall, BoNT/A is not without adverse outcomes, such as urinary 

tract infection, urinary retention and gross hematuria [40]. Urinary retention is a toxin-

specific result, and often necessitates temporary intermittent catheterization until toxicity 
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subsides. For the sensate patient, this is problematic. In adult idiopathic and refractory OAB, 

100U of BoNT/A causes a retention rate of 5–10%, with increasing rates from dose 

escalation [16,18■,41■]. Very few patients report signs of systemic toxicity (dry mouth, 

dysphagia, impaired vision and muscle weakness), and when present, are usually self-

limiting [42]. In the MS population, however, 7–10% of patients had bothersome muscle 

weakness, compared to 3.8% on placebo [26■]. For adult spinal cord injury patients, this 

rate was 0–1%, but the relative risk of weakness compared to placebo was 2.59 (95% CI, 

1.36–4.91, P = 0.004) [43].

Long-term data show a durable response to treatment of OAB at 3 months, with 93% of 

patients reporting continued response. However, this percentage diminishes to 67% and 

20%, at 6 and 9 months, respectively [14]. In other reports of more than 5-year follow up, 

70% of patients had discontinued treatment; 27% because of insufficient therapeutic effect 

or tachyphylaxis, and 43% from tolerability issues. Seventy-nine percentage stopped 

treatment after the first injection, and 19% after the second injection [44].

Pediatric NGB treatment with BoNT/A does not appear as durable as in adults. In the 

nonneurogenic, idiopathic OAB child, only 30–60% respond to their first injection, with the 

rest needing at least a second injection at 6 months because of partial or no response [34,45]. 

In some studies, 40% of children remained symptomatic even after initial BoNT/A injection, 

and those with poor compliance do not have satisfactory improvement to incontinence [46]. 

In fact, up to 21.7% of low compliance bladders are deemed as nonresponders [47]. Failure 

rates of BoNT/A were 28.9% after 7 years of follow up, with only 58% of patients still 

undergoing treatment at that time. Those prone to failure had severe NDO [48]. Unpublished 

data from our institution show only a 38% composite improvement rate in incontinence 

and/or urodynamic parameters for patients with spinal dysraphism.

In a 2018 study, half of first-time responders only had clinical symptom improvement, 

without urodynamic changes. The remaining 34% did have predictable capacity and 

compliance improvement after one injection, which was unfortunately not seen in those with 

poor compliance. At a follow up of 3.7 years, 43.4% of patients (23 of 53) had to undergo 

augmentation [49]. Khan et al. [50] report a 27% rate of augmentation enterocystoplasty for 

pediatric NGB as well. Animal models with NGB suggest that BoNT/A still helps with 

reduction in fibrosis and muscle hyperplasia, explaining the effect seen in some patients 

[51,52].

In general, reasons for treatment failure may include issues with Botox storage, 

reconstitution, administration or inadequate dosing. The problem may also be specific to 

BoNT/A for bladder-level disorders. Management of nonresponders is troublesome, and 

may include subjecting patients to repeat injections, switching BoNT/A preparations (i.e. 

abo-, ona-BoNT/A), or serotypes (i.e. BoNT/B), adding multiple anticholinergic agents or 

proceeding to more definite treatment, such as diversion or augmentation [53,54]. Adding 

subsequent bladder injections does not increase efficacy. Alternatives to direct injections of 

BoNTs via transurethral electromotive drug administration have had mixed, and 

nonreproducible, results [55,56]. Anatomically, the urothelial layer is semi-impermeable, 
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which may reduce efficacy rates. To bypass this, promising techniques like ion triggered 

liposomal delivery systems are currently under trial.

Identifying those who may not respond to a second injection, particularly in children, is 

important for a decision algorithm. Brain-derived neurotrophic factor, as a urinary marker, 

may potentially identify which patients have failed initial Botox therapy, without the need 

for invasive urodynamics, which would be helpful to redirect treatment strategy [57].

NOVEL, ENGINEERED TOXINS BEYOND BOTULINUM NEUROTOXIN A

Advances in novel, engineered toxins beyond BoNT/A may hold a more promising solution. 

Ultimately, the aim is to have a toxin that has a longer duration of effect (thereby reducing 

the need for repeated cystoscopy), with minimal side-effects or systemic diffusion, at the 

lowest possible dose.

Understanding the BoNT mechanism and receptor targets is critical to the development of 

novel toxins. Briefly, BoNTs are produced by anaerobic spore-forming Clostridium and 

related species, and the overall structure comprises of a 150-kDa protoxin with three 

functional domains: a 50-kDa zinc protease domain comprises the N-terminal light chain, 

and a translocation and receptor binding domain constitutes the C-terminal 100-kDa heavy 

chain [1■]. Normally, parasympathetic, nicotinic efferent fibers via the pelvic nerve (S2–S4) 

release acetylcholine to induce bladder contractions. In the myogenic theory of OAB, 

irregular or excessive release of acetylcholine onto the detrusor smooth muscle fibers is 

considered, in part, the underlying issue. With BoNT/A injections, the toxin binds to 

receptors at the presynaptic membrane and enters neurons via receptor-mediated 

endocytosis. Once inside the endosome, acidic conditions trigger conformational changes to 

the toxin, leading to translocation of the light chain across the endosomal membrane into the 

cytosol. There, the active light chain cleaves SNARE proteins (either syntaxin 1, SNAP-25, 

or VAMP1–3 depending on the BoNT serotype), which prohibits synaptic vesicles from 

fusing with the presynaptic membrane and releasing neurotransmitters [58]. This results in 

smooth muscle relaxation.

There are two main receptors for BoNT on the presynaptic terminal. The first are 

gangliosides, and the second are protein-based receptors, including synaptic vesicle protein 

2 (SV2) or synaptotagmin 1 and 2 (Syt-1 and Syt-2) [59■,60-66]. These receptors are 

located on the synaptic vesicle, and when fused with the presynaptic membrane during 

neurotransmitter release, they are temporarily exposed to the synaptic cleft. This transient 

exposure allows BoNT binding and entry into the neuron via endocytosis. BoNT/Abinds 

Sv2, whereas BoNT/B binds Syt-1 or -2 (Fig. 1a). Expression of a specific receptor can vary 

in different tissues and neurons, which dictates the tissue sensitivity to BoNT.

The structure–function relationship between BoNT serotypes and their receptors is an 

important prerequisite to developing novel toxins. Attempts to improve BoNT/A have 

already been conducted. López de la Paz et al. [67] modified BoNT/A to improve its half-

life, and Stone et al. [68] created a BoNT/A formulated in a novel fashion to limit the extent 
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of diffusion beyond the site of injection. However, there are other toxin serotypes available, 

targeting other receptors besides SV2, with potentially more dramatic improvements.

Notably, neuron expression of Syt-1/2 is greater than SV2, so targets to Syt (such as 

BoNT/B) could theoretically be more effective [69]. This concept has been confirmed by a 

chimeric toxin approach, for instance, where a part of BoNT/A receptor-binding domain is 

replaced with the corresponding region of BoNT/B. This chimeric toxin has a four-fold 

increase in potency on mouse diaphragm paralysis compared with natural BoNT/A [70]. 

Among the two Syt receptors, Syt-2 is the dominant receptor for BoNT/B at the 

neuromuscular junction [71]. However, human Syt-2 has a residue difference at the binding 

site that weakens the receptor–toxin interaction [64,72]. As such, 60–100-fold greater doses 

of BoNT/B are required to reach the therapeutic efficacy of BoNT/A for paralyzing skeletal 

muscles. This undoubtedly increases side-effects, systemic diffusion, and potentially 

neutralizing antibody formation. No doubt, when used for OAB, natural BoNT/B showed 

less efficacy and a shorter duration of response [73-75]. As natural BoNT/B suffers from low 

potency toward human Syt-2 receptors, the creation of an engineered toxin that improves 

binding of BoNT/B to its receptor would drastically improve efficacy.

In 2017, Tao et al. [76■■] developed a novel, engineered toxin that restores high affinity 

binding to human Syt-2 receptors, termed BoNT/BMY [77■■]. This mutant toxin contains 

changes at two amino acids within its receptor-binding domain (E1191M/S1199Y), which 

compensates for the residue change seen in human Syt-2 (Fig. 1b). In addition, this mutant 

toxin also showed enhanced binding to human Syt-1 as well [76■■]. The effectiveness of 

this mutant toxin is further validated recently using a humanized mouse model, in which the 

toxin binding region of Syt-2 is replaced with the human Syt-2 sequence. As expected, 

natural BoNT/B showed a lower potency than BoNT/A for paralyzing skeletal muscles in 

humanized mice, whereas BoNT/BMY showed a much-enhanced potency than natural 

BoNT/B, reaching levels similar to BoNT/A [77■■].

Most recently, an additional improvement of BoNT/B binding to neurons has been achieved 

by introducing mutations that augment toxin binding to lipid membranes [78■■]. It was 

found that BoNT/B contains a loop structure within its receptor-binding domain, which is 

located between the Syt and ganglioside receptor [79,80]. This loop is in an ideal location 

that may interact with cell membranes. The sequence of natural BoNT/B within this loop, 

however, is less than ideal for interacting with lipid membranes. By changing two amino 

acids located at the tip of this loop with tryptophan, a mutant toxin (designated BoNT/BWW) 

was created [78■■]. Without altering the overall structure, BoNT/BWW enhances binding to 

neurons by adding a third interaction with the cell surface besides binding to gangliosides 

and Syt receptors. This newly enhanced binding to lipid membranes itself is not strong 

enough to result in nonspecific binding of toxins to other cell types, as stable binding to cells 

still requires the cobinding to gangliosides and Syt receptors. On the contrary, the lipid 

membrane interaction can retain the mutant toxin onto neuronal surfaces longer than natural 

BoNT/B, thus elevating entry of the mutant toxin into neurons and reducing toxin diffusion.

A composite mutant toxin containing both mutations, BoNT/BMY-WW, has also been created. 

In-vivo studies of rodents injected with BoNT/BMY-WW revealed less body weight loss (a 
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surrogate for systemic diffusion and toxicity), along with a far longer paralytic effect 

compared with BoNT/BMY (23 days compared to 15 days) [78■■]. These important residue 

changes provide key advantages, allowing for less toxin to be injected, reducing the chance 

of triggering an immune response and enhancing the binding by allowing more toxin to enter 

the pre-synaptic membrane efficiently.

The role of novel toxins to OAB and NGB management lies in that BoNT/BMY shows a 

higher potency than BoNT/A for paralyzing bladder tissues [77■■]. In contrast to skeletal 

muscles, where Syt-2 is the dominant receptor, Syt-1 appears to be the major BoNT/B 

receptor in the bladder. Therefore, future improvement in enhancing BoNT/B binding to 

human Syt-1 may further improve the efficacy of BoNT/B on bladder tissues. Finally, 

improved BoNT/B receptor-binding domain can be utilized to replace the receptor-binding 

domain of BoNT/A to generate a chimeric toxin that can combine the advantage of BoNT/A 

and BoNT/B.

In addition to the classic BoNTs, in 2017, a novel BoNT-like toxin was characterized, 

termed BoNT/X. Its light chain not only cleaves VAMP at a site unique from other BoNTs, 

but it is also capable of cleaving noncanonical additional VAMP family proteins, such as 

VAMP4, 5 and Ykt6 that no other BoNTs can cleave [81]. More recently, another novel 

BoNT-like toxin was isolated from Enterococcus faecium, the first non-clostridial toxin of 

its kind. Named BoNT/En, this also cleaves VAMP at a unique site, and it is the only toxin 

known that can simultaneously cleave both VAMP and SNAP-25 [82]. These BoNT-like 

toxins do not appear to target mammalian neurons, but chimeric toxins can be created by 

replacing their receptor-binding domains with the receptor-binding domain of a classic 

BoNT. The resulting chimeric toxins have been shown to paralyze mice efficiently, 

providing a way to utilize the unique capability of these BoNT-like toxins for modulating 

neuronal activities, although their therapeutic potential remains to be explored.

CONCLUSION

Management of refractory OAB, or detrusor overactivity incontinence in NGB patients, 

currently relies on BoNT/A therapy. Most nonneurogenic patients benefit greatly from 

detrusor injections, with minimal side-effects, but the result in NGB is less durable, 

especially in children. Engineered toxins, such as BoNT/BMY-WW, have enhanced efficacy 

that may serve as next-generation options in the management algorithm of OAB and NGB 

patients.
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KEY POINTS

• BoNT/A (Botox) is widely accepted in the treatment of overactive and NGB, 

but outcomes are variable, and a large portion of patients fail to respond to 

treatment.

• Novel botulinum toxins may offer an alternative to BoNT/A. Toxins 

engineered through select residue changes, or the characterization of new and 

chimeric toxins, have higher potency, efficacy and less side-effects in 

preclinical studies.

• These next-generation toxins may be suitable for urologic indications, and 

warrant further, expeditious evaluation.
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FIGURE 1. 
Engineering of BoNT/B to enhance receptor binding. (a) Evolution of BoNT/B engineering 

to gain higher binding affinity to human Syt-2. Unlike BoNT/A, which adopts SV2 as 

receptor, BoNT/B enters neurons by targeting Syt-1 and Syt-2. The thickness of band 

between toxin and receptor correlates to the degree of interaction. (b) Demonstration of 

enhancement of interaction between BoNT/BMY and human Syt-2 on a molecular level. 

Biolayer interferometry assays show significant increase in the interaction between BoNT/B 

and human Syt-2 by introducing two mutations (E1191M/S1199Y), whereas naturally 

occurring BoNT/B exhibits minimal interaction. The enhancement of binding between 

BoNT/BMY and human Syt-2 is endued through hydrophobic interactions generated by 

mutated amino acids, along with substituting two residues in a loop region of BoNT/B to 

tryptophan.
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